
Andrew Wissink
with

Richard Hornung, Steve Smith, Noah Elliott,
Brian Gunney, David Hysom

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Use of Performance Tools for AMR
Calculations with the SAMRAI Framework

October 16, 2002
LACSI Performance Tools Workshop

Outline

� SAMRAI introduction

� Parallel implementation of SAMR

� Parallel performance measurements

� Use of performance tools in SAMRAI

� Performance information “wish list”

SAMRAI overview

� Object-oriented (C++) software framework for parallel (MPI)
adaptive multi-physics applications

� Supports applications investigating multi-scale phenomena.

� High-level reusable code and algorithms shared across a variety
of applications.

www.llnl.gov/CASC/SAMRAI

2000λ

NIF Beam

λ = wavelength (e.g., 0.35µm)8f 2λ
f = lens f-number (e.g., f = 8)

f λ

Speckle

Hohlraum

ALPS uses SAMRAI for adaptive
laser plasma instability simulation

Numerical simulations need to
accommodate multiple scales

Locally refined grids resolve
wave interaction where high
accuracy is needed

Light
Plasma from
exploding foil

Understanding instabilities in
laser-plasma interactions is

critical in the design of plasma
physics experiments

Dorr, Garaizar, Hittinger (CASC-LLNL)

ALE-AMR couples ALE models with AMR
to model shock hydrodynamics

Anderson, Pember, Elliott (CASC-LLNL)

Improve accuracy of ALE simulations
by increasing concentration of mesh

points around regions of interest

Sedov blast wave density and Lagrangian mesh

Hybrid continuum-DSMC model used to
efficiently resolve interface dynamics

shock

Continuum representation
(Euler, Navier-Stokes)
away from interface

fluid A fluid B

DSMC representation
at interface

• Interface region grows and
moves as instability evolves

• Standard CFD simulation of
turbulent mixing is limited by
finest mesh scale

• Particle resolve molecular
behavior but are too
expensive for large domains

Particles resolve fine-scale dynamics of
mixing region in an adaptive calculation

Interface instability problems (e.g., Richtmyer-
Meshkov) involve coarse-scale hydrodynamic
transport and fine-scale molecular diffusion

Hornung (CASC), Garcia (SJSU)

SAMRAI provides infrastructure support
for SAMR applications research
� Parallel processing support (MPI)

� Shared algorithms

� Interfaces for SAMR data to solvers (PETSc, PVODE, hypre)

� Checkpointing & restart support (HDF)

� Parallel tools (VAMPIR, TAU)

Integrating performance tools with SAMRAI
allows them to be used for a variety of applications

Outline

� SAMRAI introduction

� Parallel implementation of SAMR

� Parallel performance measurements

� Use of performance tools in SAMRAI

� Performance information “wish list”

Fine local mesh L2

Intermediate local mesh L1

Coarse global mesh L0

Structured AMR (SAMR) employs a
dynamically adaptive “patch” hierarchy

Patch
L0

Patches
L1

Patches
L2

� Based on methods of Berger, Colella, Oliger
� Hierarchy defines nested levels of varying

mesh resolution
� Data stored on patches covering logically

rectangular index space

Dynamic mesh adapts to features as
solution evolves

Initial conditions:
inside sphere
density = 8.0
pressure = 40.0

outside sphere
density = 1.0
pressure = 1.0

Adaptive solution of
Euler equations

Patches distributed to processors to
balance computational workload

1) Box regions constructed 2) Boxes split to
construct
patches

3) Patches
bin-packed
to processors

Proc0
Proc1
Proc2
Proc3
Proc4

Level 2
Boxes

0 1

2
3 4

0

1

2

3

4� Generally have multiple patches per processor
� Each level load balanced separately
� Spatial bin packing may be used to maintain locality of

patches on processors

� Amortize cost of creating send/receive sets over multiple
communication cycles

� Data from various sources packed into single message stream
— supports complicated variable-length data
— one send per processor pair (low latency)

Communication schedules create and
store data dependencies

Send Set Receive Set

message buffer

MPI sendCell Data (double)

Particles

packStream(...);

Outline

� SAMRAI introduction

� Parallel implementation of SAMR

� Parallel performance measurements

� Use of performance tools in SAMRAI

� Performance information “wish list”

Non-scaled Euler benchmark – same
problem size run on all processors

Problem Size on Each Level

0
1
2
3
4
5
6
7

0 0.01 0.02 0.03 0.04 0.05 0.06
Simulation Time

G
rid

ce
lls

 (i
n

m
ill

io
ns

)

Level 2
Level 1
Level 0

3D spherical shock - Euler hydrodynamics

� Workload changes over simulation

� Per-processor workload decreases
as number of processors increased

Parallel Performance of non-scaled
adaptive Euler benchmark

Measured Solution Time on Various Processors
(3 Level Euler Sphere Problem)

10

100

1000

10000

32 64 128 256 512

Processors

W
al

lc
lo

ck
 T

im
e

Ideal
Total
Time Advance
Re-gridding
Other

November 2001

Non-scaled
Euler calculation

ASCI IBM Blue Pacific

Scaled linear advection benchmark –
problem size increased with processors

3D advecting sinusoidal front - linear advection

Problem Size on Each Adaptive Level

0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5

Simulation Time

G
rid

ce
lls

 (i
n

m
ill

io
ns

)

Level 2
Level 1
Level 0

� Workload uniform over simulation

� Per-processor workload remains
constant as number of processors is
increased

Scaled results with new graph-based
schedule construction algorithm

Scaled
Linear advection

calculation
IBM ASCI Blue Pacific

0

500

1000

1500

2000

2500

3000

32 64 128 256 512
Processors

W
al

lc
lo

ck
 T

im
e

Ideal
Total
Time Advance
Re-gridding
Other

March 2002

Outline

� SAMRAI introduction

� Parallel implementation of SAMR

� Parallel performance measurements

� Use of performance tools in SAMRAI

� Performance information “wish list”

“Homegrown” timers in SAMRAI

� SAMRAI Timers:

— Library instrumented to maintain a set of timers around
routines of interest

— Users can manually enter timer calls into their application

— May be turned on/off via input file (e.g. timer_list = “pkg::*::*”)

— Accesses posix times() function and/or MPI_Wtime()

— Provides per-processor, inclusive and exclusive times as well
as reduced time over processors (e.g. max, average time)

static Timer timer = TimerManager->getTimer(“pkg::class::method”);
timer->start();
…
timer->stop();

SAMRAI timers may invoke VAMPIR

� VAMPIR links added with help from J. Vetter, 10/00

� Useful for tracking down load imbalance problems

� Message stats minimally helpful – trace too dynamic to make sense of.

VAMPIR trace of spherical shock
calculation 64 processors

Computation more expensive in cells
around rarefactions

— Colella-Woodward Godunov scheme
for strong shocks

— Nonlinear its in Riemann solver

SAMRAI - TAU

� Advantages of Tau:

— Freely available

— Automatic instrumentation capability

— Readily configurable

� SAMRAI v1.3 (released 9/02) contains links to Tau (thanks to S.
Shende!)

� We began collaboration with Tau in Spring
2002 to apply their tools in SAMRAI.

TAU Groups

� Organizes timers
into groups

� Useful for
application codes
built on top of
SAMRAI to
distinguish their
costs.

Automatic Instrumentation with TAU
Programming Database Toolkit (PDT)

� Automatic instrumentation desirable to users, but…

� High-level classes in SAMRAI invoke many lower level routines,
leading to information overload.

Refine

TAU calls invoked by SAMRAI Timers

� Manually instrumented
calls provide clearer
information, but...

clickclick

� Requires more intervention by users.

Tradeoff: time to manually instrument vs. time to parse
automatically instrumented information.

Outline

� SAMRAI introduction

� Parallel implementation of SAMR

� Parallel performance measurements

� Use of performance tools in SAMRAI

� Performance information “wish list”

Memory Analysis

� Dynamic applications like AMR often lead to memory imbalances.

� Many scientific applications are memory bound, rather than CPU
bound.

� A tool that provides information about dynamic memory usage
would be useful.

Wallclock
execution

time

RAM
memory

stack

heap

Node P

Execution rate analysis

� SAMRAI makes efforts to maximize execution performance:

— C++ classes in SAMRAI manage “overhead” operations (e.g.
gridding, communication dependencies, etc).

— Numerical operations by F77 kernels

� Applications are interested in execution rates of various parts of
their algorithm.

� VAMPIR/Tau have links to PAPI provide hardware counter statistics.

It would be useful to combine hardware
counters and timing information to provide

statistics on execution rates.

Performance information in code testing

� Like many larger-scale software development efforts, SAMRAI
runs nightly autotests on various platforms to detect bugs,
inacccuracies.

� It is also desirable to identify significant changes in performance

— Tools that distinguish performance variations and alerts when
significant differences arise.

Sun

Linux

Compaq

GPS/TC2k
IBM

Blue/Frost
Others…

SAMRAI

Concluding Remarks

� Performance tools are essential for parallel scientific applications,
particularly for dynamic calculations like AMR.

� Experiences with existing tools:

— Simple text-based timers are heavily used.
— VAMPIR/Tau useful in providing more detailed information, such as

load imbalances.
— Communication pattern information only marginally useful – AMR

calculations too dynamic to establish trends.

� Features that we would find useful in future tools:

— RAM memory use analysis.
— Reports of execution rates.
— Incorporation of performance analysis into testing.

Auspices Statement

� This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

� Document UCRL-PRES-150627

